
Persistence exponents and scaling in two-dimensional XY model and a nematic model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 5859

(http://iopscience.iop.org/0305-4470/38/26/002)

Download details:

IP Address: 171.66.16.92

The article was downloaded on 03/06/2010 at 03:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 5859–5868 doi:10.1088/0305-4470/38/26/002

Persistence exponents and scaling in two-dimensional
XY model and a nematic model

Subhrajit Dutta and Soumen Kumar Roy

Department of Physics, Jadavpur University, Calcutta 700 032, India

E-mail: subhro@juphys.ernet.in and skroy@juphys.ernet.in

Received 23 March 2005, in final form 12 May 2005
Published 15 June 2005
Online at stacks.iop.org/JPhysA/38/5859

Abstract
The persistence exponents associated with the T = 0 quenching dynamics of
the two-dimensional XY model and a two-dimensional uniaxial spin nematic
model have been evaluated using a numerical simulation. The site persistence
or the probability that the sign of a local spin component does not change
starting from initial time t = 0 up to a certain time t, is found to decay as
L(t)−θ (L(t) is the linear domain length scale), with θ = 0.305(±0.020) for
the two-dimensional XY model and 0.199(±0.009) for the two-dimensional
uniaxial spin nematic model. We have also investigated the scaling (at the late
time of phase ordering) associated with the correlated persistent sites in both
models. The persistence correlation length was found to grow in the same way
as L(t).

PACS numbers: 05.50.+q, 05.40.−a, 05.70.Ln, 64.70.Md

1. Introduction

Phase ordering of various systems with scalar, vector and more complex order parameters has
been an active field of research over the last few years [1, 2]. When a system is suddenly
quenched from a high-temperature homogeneous equilibrium phase into an ordered phase (at
temperature less than the critical temperature, Tc), the system does not get ordered suddenly.
Instead domains of various degenerate phases grow and in the thermodynamic limit the
system develops a length scale that grows with time without any upper bound. Recently we
have studied the coarsening dynamics of the two-dimensional quenched uniaxial nematic [3],
where it has been established using a cell dynamic scheme [4], that in a zero temperature
quenched two-dimensional nematic lattice model, dynamical scaling is obeyed and the growth
law associated with the linear length scale of domains (L(t)) is similar to that in the two-
dimensional XY model [5]. In both the systems, asymptotically, the domain length scale
L(t) was found to grow as (t/ln t)1/2. Although the interaction Hamiltonians have different
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symmetry, the similar structure of the topological defects supported by these models [3, 6]
(both models possess stable point topological singularity) is responsible for similar asymptotic
growth law of L(t). So from the point of view of the growth law associated with the dynamical
domain length scale L(t), the coarsening dynamics are indistinguishable. However when we
look for more detailed correlation that exists within the dynamically evolving non-equilibrium
system, it may be possible that the two models will show different features. One such physical
quantity, which probes the details of the history of the dynamics, is the persistence probability
or simply the persistence. Persistence is an interesting property from both theoretical and
experimental points of view in the field of non-equilibrium statistical mechanics [7].

Persistence in a general non-equilibrium process may be defined as the probability that
any zero-mean stochastic variable X(t) does not change sign up to certain time t starting from
an initial time t = 0. Study of persistence in various non-equilibrium systems is of recent
interest [8, 9]. Here one studies the time evolution of the order parameter field, φ(x, t), which
varies in space as well as in time. Persistence in a general extended non-equilibrium system
may be defined as the probability that some local order parameter (fixed at a particular point x
in space) has not changed sign up to a certain time t starting from the initial time t = 0. This is
more properly called the local or site persistence (another quantity, which is of relevant interest
in the study of non-equilibrium systems, is global persistence [10, 11], which is defined in
the same way for the total value of the order parameter). It is of relevant interest to see how
persistence probability decays with time. The decay of persistence with time is known exactly
only for Markovian processes where the two time Gaussian stationary correlator, C(|τ1 − τ2|),
is of pure exponential form [12–14]. However, no general answer is known for non-Markovian
processes (history dependent), where the two time Gaussian stationary correlator deviates from
the pure exponential form, and the decay of persistence which sensitively depends on the full
form of the correlator (not just its asymptotic time form and hence becomes history dependent)
becomes non-trivial. For the case of a simple one-dimensional random walk problem, which
is a Markovian one, the persistence probability is found to decay as p(t) ∼ t−θ with θ exactly
equal to 1/2 [8, 15]. However most of the non-equilibrium dynamical processes are non-
Markovian and hence calculation of the persistence exponents becomes analytically difficult.
For example, the decay of persistence in the case of a simple scalar diffusion equation has
been shown to be non-trivial [16, 17]. In a general non-equilibrium dynamics, the normalized
two time correlator in asymptotic limit of time may be written in the simple scaling form
f (L(t)/L(t ′)) (with t < t ′ and with the assumed validity of dynamical scaling) [1], where
L(t) is the diverging dynamic length scale associated with the domains in a coarsening system.
The form of the two time correlator is direct outcome of the scaling hypothesis, which indicates
the presence of a single characteristic length scale associated with the dynamically evolving
system in late time dynamics. Clearly this process is non-stationary in real time. However if
one makes the transformation u = lnL(t) [18], then the evolution of the normalized stochastic
process (X(t)/

√
〈X(t)2〉) becomes stationary in the logarithmic scale u and the persistence

probability for a Gaussian process in the asymptotic limit decays as e−θu or simply as L(t)−θ

[12], where θ is known as the persistence exponent. In some of the papers on persistence,
P(t) is assumed to decay as t−θ ′

, although in general it should decay as L(t)−θ . This is
because L(t) ∼ t1/z is not always true, z being the dynamic growth exponent associated with
the growth law of L(t), (e.g. in the present systems L(t) ∼ (t/ln t)1/2), and hence P(t) is
not always of the form t−θ ′

[19]. So it will be more appropriate to designate the power of
L(t) in the decay as the persistence exponent. The exponent θ comes out to be independent
of other dynamic exponents such as the dynamic growth exponent z and autocorrelation or
Fisher–Huse exponent λ [1] (in the scaling regime the two time correlation function or the
autocorrelation function is given by C(t, t ′) ∼ (L(t)/L(t ′))λ, for t ′ � t).
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Persistence of continuous spin systems, to our knowledge, has not been investigated
earlier, although there is a considerable amount of numerical and analytical work on the
persistence of discrete spin models such as Potts and Ising models [8, 18, 20, 21]. The
experimental determination of the persistence exponent for the two-dimensional Ising model
was performed by Yurke et al [22], using a twisted nematic film. The dependence of the
persistence exponent on the updating rule of the dynamics was studied for the one-dimensional
zero temperature Glauber Potts model [9, 23]. Study related to finite temperature persistence
[12, 24–26] reveals that the temperature universality is not broken by this new exponent
[12, 25].

In the present work we have performed a numerical simulation to obtain the persistence
exponent associated with the T = 0 quenching dynamics of the two-dimensional spin models.
These are the XY model and the uniaxial spin nematic model (where the spin dimensionality
is three). As already stated, both systems obey dynamical scaling in a T = 0 quench and
the domain length scales as (t/ln t)1/2 in the asymptotic limit. The purpose of the present
study is twofold. It is, to our knowledge, the only work so far on the study of the persistence
exponent in a continuous spin system and secondly we have investigated if the persistence
exponents differ in two systems which exhibit the same asymptotic dynamical scaling growth
law. We have also investigated the scaling associated with the correlated persistence sites in
both models and these were found to grow in the same way as L(t).

2. Simulation techniques

The Hamiltonian of a two-dimensional XY model is given by

H = −
∑

〈i,j〉
(φi, φj ),

where φ is the usual two-dimensional vector spin and 〈i, j 〉 represents nearest-neighbour sites.
The equation of motion is given by [27],

∂φi

∂t
=

∑

j

φj −
∑

j

(φi, φj )φi,

where the sum is taken over nearest-neighbour sites. We have omitted any noise in the equation
of motion, hence we are effectively working at T = 0.

The Hamiltonian of the two-dimensional model representing the uniaxial nematic, is given
by,

H = −
∑

〈i,j〉
(φi, φj )

2,

where φ is the usual three-dimensional vector spin on a two-dimensional lattice. In this
model in addition to O(3) symmetry, there exists local inversion symmetry and hence it
represents a uniaxial nematic. It is also known as the spin nematic model and resembles
the celebrated Lebwohl–Lasher model for uniaxial nematic, where the nearest-neighbour
interaction is proportional to −P2(cos θ)(P2 is the second Legendre polynomial and θ is the
angle between two nearest-neighbour spin vectors) [28]. Similar to the two-dimensional XY

case, the equation of motion is given by [29]

∂φi

∂t
=

∑

j

(φi, φj )φj −
∑

j

(φi, φj )
2φi,

where the sum is taken over nearest-neighbour sites.
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t = 4000 t = 6000

t = 8000 t = 10000

Figure 1. The persistent spins in 200 × 200 two-dimensional XY model for t = 4000, 6000, 8000
and 10 000 after the system is quenched from a high-temperature initial stage to T = 0 (white
portions represent persistent sites).

We have performed a numerical simulation of discretized versions of the equations of
motion. The time step δt was taken to be 0.02. However all the results shown in this paper
were found to be independent of δt (for δt < 0.1) in the asymptotic regime. We have presented
here results for a 400 × 400 lattice. We did not observe any significant finite size effect by
comparing the results obtained for smaller lattice sizes.

3. Persistence probability and scaling of persistence correlation

The persistence probability P(t) for a continuous spin system may be defined as the probability
that starting from the initial time t = 0, any one of the components of the continuous spin at a
fixed position in the lattice does not change its sign up to time t. Owing to the symmetry, one
must average it over all components. We have taken the average over several random initial
configurations as well as over all lattice sites. Mathematically we can write the persistence
probability as

P(t) = Probability[Si(t
′) × Si(0) > 0, ∀ t ′ in [0, t]],

where Si is the ith component of the spin vector at a particular lattice site.
Scaling and fractal formation of the correlated persistence sites have attracted recent

interest by various researchers [30–32]. In the present work we have investigated scaling
in the spatial correlation of the persistence sites. For this we have evaluated the normalized
two-point corrector,

C(r, t) = 〈ni(t)ni+r (t)〉/〈ni(t)〉
where 〈 〉 represents the average over sites as well as random initial conditions. ni(t) = 1
if the ith site is persistent, otherwise it is 0. This correlation just gives the probability that
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t = 4000 t = 6000

t = 8000 t = 10000

Figure 2. The persistent spins in 200 × 200 two-dimensional spin nematic model for t = 4000,
6000, 8000 and 10 000 after the system is quenched from a high-temperature initial stage to T = 0
(white portions represent persistent sites).

the spin at (i + r)th site is persistent, given the ith site is persistent. Beyond a certain length
ξ(t) (persistence correlation length), the sites are found to be uncorrelated, and C(r, t) is
simply 〈n(t)〉 or the persistence probability P(t). However for r < ξ(t) there exists strong
correlation. In the correlated region C(r, t) shows a power-law decay with distance r−α

and hence is independent of t or L(t). So for r < ξ(t), there exists strong correlation with
scale invariant behaviour, which indicates the expected self-similar fractal structure formed
by the persistent sites [9, 30, 31]. Now at r = ξ(t), consistency demands ξ−α(t) ∼ L(t)−θ

(since P(t) ∼ L(t)−θ ), which simply implies ξ(t) should diverge as L(t)ζ with ζ = θ/α.
Mathematically we can write C(r, t) as

C(r, t) ∼ r−α for r � ξ(t)

= P(t) for r � ξ(t).

Clearly in scaling form C(r, t) can be written as

C(r, t) = P(t)f (r/ξ(t)),

where f (x) is given by

f (x) ∼ x−α for x � 1
= 1 for x � 1.

4. Results and discussions

In figures 1 and 2 we have shown how correlated regions of persistence sites are formed in the
two-dimensional XY and the two-dimensional spin nematic models at various times t, after
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Figure 3. Plot of ln P(t) against ln (L(t)) for 400 × 400 XY model. The linearity of the plot
in the asymptotic time limit ensures the decay of the form P(t) = L(t)−θ or (t/ln t)−θ/2, with
θ = 0.305 (±0.020). The linear region extends from t = 3000 to t = 10 000. Average over 12
initial configurations and 400 × 400 sites were taken.
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Figure 4. Plot of ln P(t) against ln L(t) for 400×400 spin nematic model. The linearity of the plot
in the asymptotic limit ensures the decay P(t) = L(t)−θ or (t/ln t)−θ/2, with θ = 0.199 (±0.009).
The linear region extends from t = 3000 to t = 10 000. Average over 15 initial configurations and
400 × 400 sites were taken.

the system was quenched from the initial homogeneous T = ∞ configuration. In figure 3 we
have shown the decay of the persistence with L(t) = (t/ln t)1/2 for the two-dimensional XY

model. The linearity in the log–log plot reflects the decay to be of the form P(t) = L(t)−θ

or (t/ln t)−θ/2 in the late time regime. The exponent θ we obtained was 0.305 (±0.020).
In figure 4 we have depicted the same for the two-dimensional spin nematic model and the
exponent θ we obtained was 0.199 (±0.009). The error bars provided are calculated by
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Figure 5. The variation of correlation function with distance for the 400 × 400 two-dimensional
XY model. (a) In the main figure it is shown that, for large r, C(r, t) is the same as persistence
probability (lines parallel to the x-axis represents P(t)). The data are for time steps t = 2000,
4000, 6000, 8000 and 10 000 (from top to bottom) with persistence probability P(t) = 0.366,
0.331, 0.313, 0.301 and 0.292 respectively. (b) Inset shows C(r, t) for t = 4000, 6000, 8000 and
10 000, for small values of r (�5). The overlapping values of C(r, t) in the neighbourhood of
r = 0 for different time steps verify that C(r, t) is independent of t for small values of r .
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Figure 6. The variation of correlation function with distance for the 400 × 400 two-dimensional
spin nematic model model. (a) In the main figure it is shown that, for large r, C(r, t) is the
same as persistence probability (lines parallel to the x-axis represent P(t)). The data are for time
steps t = 2000, 4000, 6000, 8000 and 10 000 (from top to bottom) with persistence probability
P(t) = 0.561, 0.527, 0.508, 0.496 and 0.487 respectively. (b) Inset shows C(r, t) for t = 4000,
6000, 8000 and 10 000, for small values of r (�5). The overlapping values of C(r, t) in the
neighbourhood of r = 0 for different time steps verify that C(r, t) is independent of t for small
values of r.

estimating the standard deviation of the values of θ obtained from power-law fits available
from the simulations with different initial configuration.

In figures 5 and 6 we have shown the correlator C(r, t) plotted against r for various values
of t for the XY model and the spin nematic model. In both figures it is observed that for small
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Figure 7. Plot of ln(C(r, t)/P (t)) against ln(r/ξ(t)). The best collapse is obtained when the value
of ζ = 1 (±0.01), i.e. if ξ(t) ∼ (t/ln t)1/2. The straight line for small values of r/ξ(t) has slope α

equal to 0.305, which is equal to the persistence exponent of the two-dimensional XY model. The
data used are for time t = 5000, 6000, 7000, 8000, 9000 and 10 000.
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Figure 8. Plot of ln(C(r, t)/P (t)) against ln(r/ξ(t)). The best collapse is obtained when the value
of ζ = 1 (±0.006), i.e. if ξ(t) ∼ (t/ln t)1/2. The straight line for small values of r/ξ(t) has slope
α equal to 0.191, which is almost equal to the persistence exponent of the two-dimensional spin
nematic model. The data used are for time t = 3000, 4000, 5000, 6000, 7000, 8000, 9000 and
10 000.

values of r, C(r, t) for each time overlaps and for large values of r, C(r, t) is equal to P(t). For
small values of r, a r−α decay is observed. In figures 7 and 8 we have shown the log–log plot
of the scaling function of C(r, t) for the XY model and the spin nematic model. We obtained
good collapse for ζ = 1 (and hence α = θ) which implies that the persistence correlation
length ξ(t) diverges as L(t) or (t/ln t)1/2. It is of interest to note that the persistence correlation
length has similar divergence as that of the length scale associated with the domains formed
during coarsening of the system. The error bars of ζ (mentioned in the figure captions) are
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quite rough here, calculated by estimating the region over which the collapse appears optimal.
We point out that we have also tried to collapse our data with the familiar form of the growth
law t1/2, but were unable to obtain a good collapse.

5. Conclusion

We would like to summarize the main findings of the paper. In the present work we have studied
the site persistence in the T = 0 quenching dynamics of the two-dimensional XY model and
the two-dimensional spin nematic model. Although in both the models, the dynamical domain
length scales L(t) have similar growth laws in the asymptotic limit, the persistence exponents
come out to be different. In the XY model, it is 0.305(±0.020) while in the spin nematic
model it is 0.199(±0.009). We have also investigated the scaling structure of persistence sites
for both the models. We obtained the growth law of persistence correlation length to be the
same as that of the domain length scale L(t), i.e. (t/ln t)1/2.
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